
CPU-PCGN: Procesamiento
Eficiente de Redes
Convolucionales de Grafos en
Arquitecturas CPU

Máster Nuevas Tecnologías en
Informática

Trabajo Fin de Máster

Autor:
Nicolás Meseguer Iborra
Tutor/es:
Manuel Eugenio Acacio Sánchez
José Luis Abellán Miguel
Francisco Muñoz Martínez

7 de Junio de 2022

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

CPU-PCGN: Procesamiento
Eficiente de Redes

Convolucionales de Grafos en
Arquitecturas CPU

Implementación, Evaluación y Mejora

Autor
Nicolás Meseguer Iborra

Tutor/es
Manuel Eugenio Acacio Sánchez

Ingeniería y Tecnología de Computadores
José Luis Abellán Miguel

Ingeniería y Tecnología de Computadores
Francisco Muñoz Martínez

Ingeniería y Tecnología de Computadores

Máster Nuevas Tecnologías en Informática

Murcia, 7 de Junio de 2022

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

Declaración firmada sobre originalidad
del trabajo

D. Nicolás Meseguer Iborra, con DNI , estudiante de la titulación de
Máster Nuevas Tecnologías en Informática de la Universidad de Murcia y autor
del TF titulado “CPU-PCGN: Procesamiento Eficiente de Redes Convolu-
cionales de Grafos en Arquitecturas CPU”.

De acuerdo con el Reglamento por el que se regulan los Trabajos Fin de Grado y
de Fin de Máster en la Universidad de Murcia (aprobado C. de Gob. 30-04-2015,
modificado 22-04-2016 y 28-09-2018), así como la normativa interna para la oferta,
asignación, elaboración y defensa delos Trabajos Fin de Grado y Fin de Máster de
las titulaciones impartidas en la Facultad de Informática de la Universidad de Murcia
(aprobada en Junta de Facultad 27-11-2015).

DECLARO:

Que el Trabajo Fin de Máster presentado para su evaluación es original y de elabo-
ración personal. Todas las fuentes utilizadas han sido debidamente citadas. Así mismo,
declara que no incumple ningún contrato de confidencialidad, ni viola ningún derecho
de propiedad intelectual e industrial.

Murcia, a 7 de Junio de 2022

Fdo.: Nicolás Meseguer Iborra
Autor del TFM

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

A mi madre Carmen, a mi pareja y a mi familia, sin los cuales
no habría podido acabar esta tesis. Al Dr. D. Manuel E. Acacio
Sánchez, Dr. D. José L. Abellán Miguel y D. Francisco Muñoz

Martínez, por haber sido profesores, tutores y compañeros.

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

Resumen
Debido al gran éxito de las redes neuronales convolucionales (Convolutional Neural
Networks o CNNs) en Deep Learning (DL), la operación convolucional se ha trasladado
más allá del procesamiento de datos mapeados en el espacio Euclídeo (por ejemplo, las
imágenes), a datos estructurados en forma de grafos (espacio no Euclídeo) como por
ejemplo los grafos de la web, redes sociales, redes de citaciones a artículos, etc., dando
lugar a las redes convolucionales de grafos (Graph Convolutional Networks o GCNs).

Las GCNs han ido ganando popularidad debido a su eficacia en aplicaciones del
mundo real como la recomendación, el procesamiento del lenguaje natural, etc. Dado
que las redes neuronales y la propagación de grafos tienen una alta complejidad de
cálculo, las GPU se han introducido para el entrenamiento. Sin embargo, es muy
difícil realizar un cálculo eficiente de GCN debido a la irregularidad de los grafos.

En este trabajo, presentamos CPU-PCGCN, un método novedoso y alternativo a
PCGCN para acelerar el cálculo de GCN aprovechando la localidad de los grafos us-
ando únicamente la CPU como unidad de cómputo. Demostramos que los grafos del
mundo real suelen tener la propiedad de agrupación que puede utilizarse para mejorar
la localidad de los datos en la computación de las GCNs.

A continuación, CPU-PCGCN propone dividir el grafo completo en trozos según la
localidad y procesar los subgrafos con una estrategia de computación dual que incluye
métodos de procesamiento selectivo y completo para subgrafos dependiendo de su dis-
persión.

En comparación con la implementación base de GCN (PyGCN) en conjuntos de
datos reales y sintéticos, nuestra implementación únicamente sobre CPU consigue un
aumento de velocidad de hasta 3.94 veces en el mejor de los casos.

CPU-PCGCN ha sido conectada con dos herramientas novedosas para la generación
sintética de grafos, PaRMAT (versión paralela de la popular herramienta RMAT) y
Graphlaxy (framework reciente para la generación masiva de grafos sintéticos). Esto
permitirá ayudar al usuario a estudiar cargas de trabajo sintéticas en el entrenamiento
de una GCN, así como evaluar optimizaciones de la propia herramienta CPU-PCGCN
para acelerar todavía más el costoso proceso de entrenamiento de las GCNs.PUBLIC

 VERSIO
N

PUBLIC
 VERSIO

N

Abstract
Due to the great success of Convolutional Neural Networks (CNNs) in Deep Learning
(DL), the convolutional operation has moved beyond the processing of data mapped in
Euclidean space (e.g. images), to data structured in the form of graphs (non-Euclidean
space) such as web graphs, social networks, article citation networks, etc., giving rise
to Graph Convolutional Networks (GCNs).

GCNs have been gaining popularity due to their huge success in real-world applica-
tions such as recommendation, natural language processing, etc. Since neural networks
and graph propagation have high computational complexity, GPUs have been intro-
duced for training. However, it is notoriously difficult to perform efficient computation
of GCNs due to the irregularity of graphs.

In this thesis, we present CPU-PCGCN, a novel and alternative method of PCGCN
to accelerate GCN computation by exploiting the locality of graphs using only the CPU
as the computational unit. We show that real-world graphs often have the clustering
property that can be used to improve data locality in GCN computation.

CPU-PCGCN then proposes to split the complete graph into chunks according to lo-
cality and process the subgraphs with a dual mode computation strategy that includes
selective and complete processing methods for subgraphs depending on their sparsity.

Compared to the baseline implementation of GCN (PyGCN) on real-world and syn-
thetic datasets, our CPU-only implementation on top of PyTorch achieves up to 3.94×
speedup over the best case.

CPU-PCGCN has been developed along with two novel tools for synthetic graph
dataset generation, PaRMAT (a parallel version of the popular RMAT tool) and
Graphlaxy (a recent framework for massive synthetic graph generation). This will
help the user to study synthetic workloads in the training of a GCN, as well as to
evaluate optimisations of the CPU-PCGCN tool itself to further accelerate the costly
process of training GCNs.

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

Contents
1 Introduction and Motivation 1

2 Background 5
2.1 Artificial Neuron . 5
2.2 Structure of a Neural Network . 6
2.3 Training vs Inference . 7
2.4 Graph Domain . 8
2.5 Graph Neural Networks . 11
2.6 Graph Convolutional Networks . 12

3 Related Work 15
3.1 Pre-processing acceleration techniques 15

3.1.1 Cluster-GCN . 15
3.1.2 GraphSAINT . 16
3.1.3 METIS . 16

3.2 Software acceleration . 17
3.2.1 HAG . 17
3.2.2 PCGCN . 17

3.3 Hardware acceleration . 20
3.3.1 AWB-GCN . 20
3.3.2 EnGN . 20
3.3.3 HyGCN . 20

4 CPU-PCGCN 21
4.1 Datasets . 22
4.2 Partitioning the graph . 25
4.3 Calculating edge blocks and their sparsity 25
4.4 GCN vs CPU-PCGCN . 26

5 Evaluation 31
5.1 Mehodology . 31
5.2 Experimental Results . 33

6 Conclusions 37

Bibliography 39

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

List of Figures
2.1 Biological and Artificial Neuron: (a) human neuron; (b) artificial neu-

ron; (c) biological synapse; and (d) ANN synapses [1] 5
2.2 How an artificial neuron works [2] . 6
2.3 NNs and DNNs [3] . 7
2.4 Attributes of a graph [4] . 8
2.5 Undirected vs Directed Edges [4] . 9
2.6 Adjacency matrix of a text graph [4] 9
2.7 Sparse Matrices [5] . 10
2.8 Computation process of a GNN [6] . 12
2.9 Multi-layer Graph Convolutional Network (GCN) [7] 13

3.1 Graph partition and partion-centric processing for an undirected graph [8] 18

4.1 Flowchart of CPU-PCGCN . 23
4.2 CPU-PCGCN Model . 24

5.1 Profiling of the different phases of the computation at layer level 34
5.2 Runtime (s) of the different datasets 36

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

List of Tables
5.1 Datasets used in evaluation. (K: Thousands) 32
5.2 Profiling (s) of CPU-PCGCN layer computation 33
5.3 The overall runtime (s) of GCN and CPU-PCGCN, denoted as CPU-

partitions in powers of two . 35
5.4 The overall runtime (s) of varying sparsity, denoted as CPU-partitions-

threshold . 35

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

1 Introduction and Motivation
In recent years, data has played a very important role in society and, as a consequence,
the need to preserve and organize it has arisen. The amount of data generated on a
daily basis is overwhelming, therefore we need algorithms that are able to automati-
cally process such an enormous amount of information.

Machine learning (ML) is a branch of artificial intelligence (AI) in computer science,
which focuses on the use of data and algorithms to give the computers the ability to
learn without being explicitly programmed, and that is gradually improving its accu-
racy. Because of its scalable capacity and wide range of applications, it has become a
high-powered branch of engineering [9].

Since the beginning of ML, the goal has been to mimic the way the human brain
works, hence computational learning approaches have been built with the human bio-
logical system in mind. These Brain-Inspired approaches are now commonly employed
for Artificial Intelligence issue solving. Deep Learning (DL), in particular, is the out-
performing approach.

DL is a machine learning technique that teaches computers to do what comes natu-
rally to humans: learn by example. It is one of the most promising sub-fields and has
experienced strong growth in the last few years. In deep learning, a computer model
learns to perform classification tasks directly from images, text, sound, i.e., data.

The basis of DL models is the Neural Network (NN), which aims to imitate the
functioning of the brain by grouping together a collection of small artificial neurons in
a series of layers, with the outputs of one layer forming the inputs of the next one. The
capacity of NNs to extract high-level features directly from input data is a significant
advance over earlier strategies relying on expert-designed rules or hand-drawn features.

As a result, the term Deep applied to a NN (Deep Neural Network) derives from
the prospect of having an usually big number of layers, each with a high number of
neurons, to reduce prediction error.

DNN models typically serve two purposes, either training (teaching the network
through a vast number of examples so that it can later formulate a proper conclusion
from actual data) or inference (once the network has been trained, it is able to generate

PUBLIC
 VERSIO

N

2 Introduction and Motivation

a result that is close to the real one for data never seen before).

DNNs have achieved a lot of advances in many areas, e.g., image and speech recog-
nition, natural language processing, and many real-world applications are currently
based on them, like self-driving, search engine, recommendation and so on. In fact,
nowadays there are many DNN models, although depending on the task targeted, not
all models perform well. For example, Convolutional Neural Networks (CNNs) are
used mainly for image processing and classification, and have achieved a huge success
in computer vision [10]; Recurrent Neural Networks (RNNs) have been typically used
in Natural Language Processing (NLP) [11], etc.

Because of the vast amount of data generated today on the Internet or in sensor
deployments from the Internet of Things (IoT) field, as well as the large computational
capacities of today’s hardware, deep and complex neural networks can be trained with
minimal precision error, yielding results never seen before.

Graphs are all around us; real world objects are often defined in terms of their con-
nections to other things, from which knowledge can be extracted. A set of objects
(vertices), and the connections (edges) between them, are naturally expressed as a
graph. Indeed, recent researches on analyzing graphs with machine learning have been
receiving more and more attention from the community because of the great expres-
sive power of graphs and similarity to real-word data representation, i.e. social net-
works [12], scientific publications [13], or protein-to-protein interaction networks [14].

Traditional DNNs (CNNs, MLPs or RNNs) are not able to correctly extract infor-
mation from a graph due to the very nature of the data. For this reason, Graph Neural
Networks (GNNs) emerge as a new type of DNN especially adapted to process this
type of data structures.

GNNs have exploded onto the machine learning scene in recent years owing to their
capability to model and learn from graph-structured data. Such an ability has strong
implications in a wide variety of fields whose data is inherently relational, for which
conventional neural networks do not perform well [6]. This way, GNNs can be defined
as deep learning models that operate on a graph domain, focusing on tasks such as
node classification or link prediction [15].

Among the different types of GNNs studied so far by the scientific community, Graph
Convolutional Networks (GCNs) are currently receiving a lot of attention. In particu-
lar, GCNs get their inspiration from CNNs, and more precisely, apply the concept of
convolutional layer to graph-structured data (e.g., social networks, knowledge graphs,
etc.), and hence their name [16].

PUBLIC
 VERSIO

N

3

Most common target applications for GCNs include performing image differentiation
problems like “Zero-Shot Learning” [17] (identifying an unknown labelled image and
grouping it into known ones), or solving various problems related to research operations
and combinatorial optimisation applications, even taking a certain length of molecular
fingerprints as input and generate predicted molecular structures (MolGAN [18] is a
GCN model which helps to create new molecular structures). Another significant ap-
plication of GCNs is to solve community prediction problems, such as Karate Club of
Zachary1 (a problem based on the dispute between the administrator and the instruc-
tor of the club).

In a GCN, a single convolution operation on a graph transforms and aggregates fea-
ture information from a node’s one-hop graph neighborhood, and multiple such con-
volutions are stacked to propagate vertices’ information across far reaches of a graph.
It is worth mentioning that the aggregation step uses a heavily sparse data structure,
i.e., the adjacency matrix.

Even though this model seems to be the solution for “real-world” graphs in the deep-
learning paradigm, its tremendous size is a conditioning factor that has an impact on
the computation. This fact has recently led to the proposal of a large number of soft-
ware acceleration models [19] [20] [21] [8].

One of the biggest challenges yet to face is to speed up the graph processing which
is increasingly constrained by main memory accesses. In particular, they suffer from
poor temporal locality, as the irregular structure of graphs (graphs usually have many
vertices but relatively few edges, resulting in a huge matrix with very few connections)
results in seemingly random accesses that are hard to predict ahead of time. Not only
that, but, they suffer from poor spatial locality, due to the high degree of sparsity of
the adjacency matrix [22].

Partition-Centric Processing for Accelerating Graph Convolutional Network (PCGCN),
which is a recently software acceleration model for GCNs, [8] proposes to partition the
input graph and to employ two alternative ways of computation, depending on the spar-
sity of each of the subgraphs. To this end, PCGCN proposes to leverage the locality of
real-world graphs to accelerate GCN computing by accelerating the graph propagation.

Recent advances in GPU hardware technologies offer potentially new avenues to ac-
celerate the inference and training of GCNs, PCGCN takes advantage of the Tensor
Cores in the GPU (and proposes to move all computation to the GPU) to further ac-
celerate graph propagation, despite this, the sparsity and irregularity in graphs make
it notoriously difficult to perform efficient computing.

1http://konect.cc/networks/ucidata-zachary/

PUBLIC
 VERSIO

N

http://konect.cc/networks/ucidata-zachary/

4 Introduction and Motivation

In this work, we present the CPU-PCGCN framework, an implementation of PCGCN
especially conceived for being used on CPU-powered systems. CPU-PCGCN enhances
cache-efficiency and memory performance to efficiently execute GCNs. This framework
is built on top of a GCN model written in PyTorch, PyGCN [23]. It also makes use of
several third-party contemporary tools, such as METIS [24] for efficient partitioning
taking into account graph properties, or synthetic data generators, such as Graphlaxy
or PaRMAT [25]. In addition to this, CPU-PCGCN employs different techniques (task-
level parallelism, matrix properties, or even graph representation properties) to speed
up computation and model processing.

When CPU-PCGCN is applied, a GCN model is executed in bulk synchronous stages
of message exchange across vertex subsets known as partitions or subgraphs. This
model employs a hybrid partition-centric processing method that can choose the best
mode (sparse or dense computing) for any pair of graph partitions with distinct com-
putation properties. CPU-PCGCN pulls excellent performance from the memory hier-
archy in this manner compared to traditional GCNs models. CPU-PCGCN is openly
distributed to the scientific community2.

The rest of this work is organized as follows: Chapter 2 provides some context for
the reader, related to the field of DL and graph domain. Chapter 3 discusses different
techniques for accelerating the computation of GCNs and PCGCN-related models,
as well as partitioning techniques. Then, Chapter 4 presents the bulk of the work,
CPU-PCGCN. Finally, Chapter 5 evaluates the results obtained with CPU-PCGCN
compared to various other GCNs models, and Chapter 6 wraps-up with the conclusions
and future work.

2https://github.com/NicolasMeseguer/pcgcn

PUBLIC
 VERSIO

N

https://github.com/NicolasMeseguer/pcgcn

2 Background

2.1 Artificial Neuron
AI is now a growing and inventive discipline in a variety of study fields, with the goal
of automating human work. To that purpose, algorithms must mimic the functioning
of the human brain and the way we learn.

In Figure 2.1 (a), we can see the smallest unit of learning in the brain, the neuron.
Then, in (c) we can see how our neurons work and how they communicate, receiving
input signals from dendrites and producing output signals to other neurons via the
axon, this communication is called synapse.

As mentioned before, these AI algorithms try to mimic the way the human brain
works, thus, in (b) we can see the “artificial” neuron used by the models, and in (d)
we can see how models work; the output of one neuron is connected to the input of
multiple neurons.

Figure 2.1: Biological and Artificial Neuron: (a) human neuron; (b) artificial neuron; (c)
biological synapse; and (d) ANN synapses [1]

PUBLIC
 VERSIO

N

6 Background

Learning in the human brain involves changing the value sent at this synapse, known
as the weight. When the value of this weight is changed, the value conveyed between a
dendrite and an axon terminal changes, and the neuron learns. This theory underpins
the operation of a Neural Network (NN).

In Figure 2.2, each neuron computes by multiplying each input value from another
neuron by a weight and adding it to the remainder of the input values. Then. the ac-
cumulated total is subjected to a non-linear activation function, such as ReLU, sigmoid
or hyperbolic, and finally, the result (output y) is spread to the connected neurons.

Figure 2.2: How an artificial neuron works [2]

In general, processing a DNN involves two fundamental phases: first, a training
phase in which the neural network is trained by modifying the weights of the model
using a large number of input examples, and then, an inference phase in which a pre-
diction is made from previously unseen data using the (already trained) weights of the
DNN.

2.2 Structure of a Neural Network
The fundamental operation of a NN is depicted in Figure 2.3. As we can see, in general,
neurons (circles) are organized in layers, with connections forming from one layer to
the next. When a NN has more than 3 layers, we are discussing a Deep (Learning)
Neural Network (DNN). There are three sorts of layers in particular:

• Input Layer: It is the neural network’s input layer (red color), and it holds the
initial data with which to train or infer, such as pixels in an image or sensor
information, etc. that make up the data to be analyzed. The output connections
link to the network’s next layer.

PUBLIC
 VERSIO

N

2.3. Training vs Inference 7

• Hidden Layer: The DNN’s hidden layers are its intermediate layers (orange
color). The amount of intermediate layers is unknown and determined by the
network’s architecture. It accepts the outputs of the preceding layer (another in-
termediate or input layer) as input data and transfers the results to the network’s
next layer (another intermediate or output layer).

• Output Layer: This is the neural network’s last layer. It receives data from the
previous layer (either the input layer or another intermediate hidden layer) and
returns the final results, typically a vector of probabilities (a.k.a., scores).

Figure 2.3: NNs and DNNs [3]

Furthermore, there are two unique types based on how the model processes the
information:

• Feed-forward networks: These neurons have solely forward connections. That is,
connections from a neuron in layer i towards layer i + 1. In this category, we
have several well-known models such as: MLPs, CNNs and GCNs, which will be
discussed below.

• Backward networks: A neuron in layer i can be connected to neurons in its own
layer (feedback), as well as, to neurons in the preceding layer (i − 1). Some
examples belonging to this category are Long Short Term Memory Networks
(LSTM) and Recurrent Networks (RNNs).

2.3 Training vs Inference
As previously stated, the deployment of a NN involves two different phases:

• Training: NNs are learning models that are built on the inductive learning ap-
proach, which entails teaching the network through a vast number of examples so

PUBLIC
 VERSIO

N

8 Background

that it can later infer a proper conclusion from actual data. This type of train-
ing can be done in 2 different ways: Offline Training (differentiate between the
training phase and the inference phase) and Online Training (while producing
real conclusions, the network is being trained).

• Inference: The inference phase begins once the network has been trained. Thus,
for a data set never seen before, it is able to generate a result that is close to the
real one.

The training phase is usually performed in datacenters, using powerful processors
(typically GPUs) and specialized accelerators. Once the weights have been obtained,
the model can be passed into production through the inference phase.

2.4 Graph Domain
Graphs are all around us; real world objects are often defined in terms of their con-
nections to other things. A set of objects, and the connections between them, are
naturally expressed as a graph [4]. Figure 2.4 introduces a graph representation, which
represents the relations (edges) between a collection of entities (vertices).

Figure 2.4: Attributes of a graph [4]

We can additionally specialize graphs by associating directionality to edges (directed,
undirected), see Figure 2.5. The edges can be directed, where an edge e has a source
node, vsrc, and a destination node vdst. In this case, information flows from vsrc to vdst.
They can also be undirected, where there is no notion of source or destination vertex,
and information flows in both directions. This will be a key-concept for Chapter 4.

Graphs are very flexible data structures that allow multiple types of information to
be represented. For example, Figure 2.6 shows how we can model text to be repre-
sented as a graph.

PUBLIC
 VERSIO

N

2.4. Graph Domain 9

Figure 2.5: Undirected vs Directed Edges [4]

In particular, we can digitize text by associating indices to each character, word,
or token, and representing text as a sequence of these indices. This creates a simple
directed graph, where each character or index is a node and is connected via an edge
to the node that follows it.

Figure 2.6: Adjacency matrix of a text graph [4]

As another example, scientists routinely cite other scientists’ work when publishing
papers. We can visualize these networks of citations as a graph, where each paper is a
node, and each directed edge is a citation between one paper and another. This kind
of graphs will be used in Chapter 5 for evaluating CPU-PCGCN.

Let’s step forward and take a look at the pubmed dataset [26]. It consists of 19,700
biomedical publications (vertices) classified into one of three classes (labels). The ci-
tation network consists of 108,300 links (edges). Each publication in the dataset is
described by a 0/1-value word vector indicating the absence/presence of the corre-
sponding word from the dictionary (features). The dictionary consists of 500 unique
words (max. features).

Graphs have a series of characteristics attached. Considering pubmed dataset, one
of them is the label, which classifies the paper into a class, i.e. a paper is related to
one topic or another. Another one is the number of words present in the paper out of

PUBLIC
 VERSIO

N

10 Background

the 500, this is called the features vector, and each node/vertex has it’s own features
vector. This underpins the operation of a GNN.

For the moment, let’s stick with vertices V and edges E. With these we will be
able to build a data structure that stores the graph, the adjacency matrix (using a
0/1-value integer to represent the connections between vertices). This data structure
turns out to be (in many cases) very sparse (greater density of zeros). To avoid storing
or handling this large amount of zeros, it is typically accepted a representation of the
matrix using different compressed data structures (Figure 2.7).

This compressed structures provide a more efficient access to data and facilitates
matrix operations. In this category, the most popular (and the ones that we will be
using) are: Coordinate list (COO) and Compressed Sparse Row (CSR).

The COO format (Figure 2.7 bottom left) stores the matrix in the form of a list of
tuples containing row, column and data. To enhance the time of the random access,
the tuples in the list are sorted first by row and second by column. The memory
consumption savings derived from the usage of this format start to be noticeable as
the size of the matrix increases.

The CSR format (Figure 2.7 bottom right) is similar to the COO format, but it
compresses the columns. It consists of a set of three arrays, containing the data, the
extent of rows (indices) and the indices of columns (index pointers).

Figure 2.7: Sparse Matrices [5]

Let’s conclude this section explaining relevant concepts and metrics that will be sig-
nificant for the rest of the work. When referring to graphs, a graph G is a set of points
V, called vertices, which are connected by a set of links E, called edges. Thus, G =
(V, E).

PUBLIC
 VERSIO

N

2.5. Graph Neural Networks 11

When discussing the symmetry and reciprocity of the set of edges, we distinguished
between two types, directed and undirected graphs. While directed graphs are effec-
tive for modeling certain real-world structures and appear to preserve the hierarchical
structure, undirected graphs are quite prevalent in practice and are better modeled for
many real-world interactions [27].

In graph theory, the concept of cluster (or community) refers to a group of vertices
that are more connected between them than to the other vertices outside the cluster
(’small-world’ property), and it is a relevant concept that tends to appear in most real-
world graphs. One metric that defines this tendency inside a graph is called cluster
coefficient, and it measures the degree to which vertices in a graph tend to cluster
together (measures the locality). Cluster coefficient is expressed as a real number
between zero (no clustering), and one (maximal clustering) [28] [29].

2.5 Graph Neural Networks
GNNs were initially proposed in 2009 [30] as an extension of neural networks that can
process data in graph format, providing a convenient way for node level, edge level,
or graph level prediction task. The intuition of GNN is that vertices are naturally de-
fined by their neighbors and connections, which they are; in essence, the objective (see
Figure 2.8) is to learn a state embedding that, for each vertex, encapsulates both the
vertex’ initial feature vector (attributes/features) and the information of the neighbor-
hood (which represents the local graph structure that surrounds them). This embed-
ding is used to produce the output [31]. Through an iterative process of information
message-passing across vertices, these algorithms capture the complex dependencies of
the network.

The first step of a GNN computation is, for each node, to collect the features from
the edges, neighbourhood vertices and graph, and aggregate them into a single set.
Note that, this operation is computationally very expensive due to the high degree of
sparsity of the graph’s adjacency matrix. Afterwards, there is a process for combin-
ing all the attributes, which can be done through different strategies, depending on
the GNN. This combination results in a new embedding feature vector that is used to
update the information of the vertices or edges, determined by the task prediction of
the algorithm. In practice, these two steps may not necessarily have to be performed
in the same order; occasionally the combination is performed first, followed by the
aggregation. In Section 2.6, we will introduce GCNs with a basic example.

Finally, if the work is done at the graph level, the final output might be a node
or edge information vector (label prediction) or a graph embedding that sums all the

PUBLIC
 VERSIO

N

12 Background

Figure 2.8: Computation process of a GNN [6]

information about the whole output graph. A GNN algorithm can be customized in
many different ways, from the aggregation and combination strategies (swapping the
order), to the number of layers to apply (like 2 or 4 GNN layers).

2.6 Graph Convolutional Networks
Generalizing well-established neural models like RNNs or CNNs to work on arbitrarily
structured graphs is a challenging problem. Some recent papers introduce problem-
specific specialized architectures [32], others make use of graph convolutions known
from spectral graph1 theory [33]. In [34], the authors take a somewhat similar ap-
proach and start from the framework of spectral graph convolutions, yet introduce
simplifications that in many cases allow both for significantly faster training times and
higher predictive accuracy, reaching state-of-the-art classification results on a number
of benchmark graph datasets.

GCNs receive the name based on the filter parameters that are typically shared over
all locations in the graph (we will talk about this in a moment). For these models, the
goal is then to learn a function of signals/features on a graph G = (V,E) which takes
as input:

• A feature description xi for every vertex i; summarized in a N × D feature
matrix X (N : number of vertices, D: number of features).

• A representative description of the graph structure in matrix form; typically in
the form of a compressed adjacency matrix A.

1A spectral graph convolution is defined as the multiplication of a signal with a filter in the Fourier
space of a graph.

PUBLIC
 VERSIO

N

2.6. Graph Convolutional Networks 13

And produces a node-level output Z (an N × F feature matrix, where F is the
number of output features per node). Then, every neural network layer can then be
written as a non-linear function:

H(l+1) = f(H l, A)

With H0 = X and HL = Z (or z for graph-level outputs), being L the number of
layers. The specific models then differ only in how f(·,·) is chosen and parameterized.
Let’s consider the following very simple form of a layer-wise propagation rule:

f(H l, A) = σ(AH lW l)

Where W l is a weight matrix for the l-th neural network layer and σ(·) is a non-
linear activation function like the ReLu.

But first, let us address two limitations of this simple model: multiplication with
A means that, for every node, we sum up all the feature vectors of all neighboring
vertices but not the vertex itself. This is easily solved by adding the identity
matrix to A.

The second major limitation is that A is typically not normalized and therefore the
multiplication with A will completely change the scale of the feature vectors. Nor-
malizing A such that all rows sum to one (i.e. D−1A, where D is the diagonal
node degree matrix), gets rid of this problem [7]. D−1A now corresponds to taking the
average of neighboring node features. In practice, it gets more interesting when using
a symmetric normalization, like D− 1

2AD− 1
2 .

Figure 2.9: Multi-layer Graph Convolutional Network (GCN) [7]

PUBLIC
 VERSIO

N

14 Background

Combining these two tricks, we essentially arrive at the propagation rule that we
will be using later on in our proposed model (Chapter 4):

f(H l, A) = σ(D̂− 1
2 ÂD̂− 1

2H lW l)

Being Â = A+ I, where I is the identity matrix and D̂ is the diagonal node degree
matrix of Â.

With this, we have the definition of GCNs and how they work with a simple example.
Finally, in Figure 2.9 we can see an actual model with two hidden layers (GCN layers)
and activations (propagation rules) in-between (ReLU). This model is comparable to
the one that will be used for CPU-PCGCN.

Let’s conclude reminding that, what we do in each GCN layer are the two steps men-
tioned in Section 2.5. First the aggregation Agg = H l×W l, and then, the combination
C = A× Agg, this output is then used for the ReLu propagation rule σ(C).

PUBLIC
 VERSIO

N

3 Related Work
Several acceleration approaches and frameworks have been proposed for the costly
Graph and GCN computation in recent years. These algorithms may be classified into
many categories based on whether they are software-based (pre-processing techniques
and software acceleration) or hardware-based (hardware acceleration). In the next
sections, some state of the art examples of each category will be described, with a
focus on software-based solutions, which are the main focus of this work.

3.1 Pre-processing acceleration techniques
These accelerators speedup GNN models without altering them. Instead, they design
additional pre-processing strategies to boost training time by creating batches in a
certain way that takes advantage of specific aspects of the input graph.

3.1.1 Cluster-GCN

Cluster-GCN [35] seeks to address the two primary problems of the GCNs training
phase. The increased computation cost, which grows in an exponential ratio with the
number of layers in the model, and the requirement for a large amount of memory in
order to keep all of the information about the graph and node embeddings required for
the calculation.

This technique aims to tackle the aforementioned concerns by making use of the
graph’s existing clustering structures (clustering coefficient). Despite its simplicity,
this strategy is successful, delivering appropriate test accuracy while reducing memory
utilization and boosting overall computing efficiency.

To reach this, the program uses a subgraph created by a graph clustering technique
(partitioning algorithm) and obtains the block of vertices contained in the subgraph for
each step. Therefore, given a graph, it is partitioned in K subgraphs. Each partition
contains a block on vertices (which is unique for each partition) and a set of edges
(only the ones which create the connections between the vertices of the cluster). As
a consequence, the adjacency matrix, as well as the feature matrix and the training
labels are partitioned accordingly.

PUBLIC
 VERSIO

N

16 Related Work

3.1.2 GraphSAINT
To scale GCNs to large graphs, state-of-the-art methods use various layer sampling
techniques to alleviate the “neighbor explosion” problem during training. Graph sam-
pling based inductive learning method (GraphSAINT) [36] is a graph sampling-based
technique that improves training efficiency and accuracy in a fundamentally different
way.

GraphSAINT creates minibatches1 by sampling the training graph rather than the
vertices or edges across GCN layers. As a result, a fixed number of well-connected
vertices in all layers in ensured.

3.1.3 METIS
Although this is not a technique directly applicable to GNNs or GCNs, it complements
the computation process and is one of the key concepts applied in this work. Serial
Graph Partitioning and Fill-reducing Matrix Ordering (METIS) [24] is a set of serial
programs for partitioning graphs, partitioning finite element meshes, and so on.

Recently, a number of researchers have investigated a class of graph partitioning
algorithms that reduce the size of the graph by collapsing vertices and edges. From
the early work it was clear that this techniques held great promise; however, it was not
known if they can be made to consistently produce high quality partitions.

METIS presents various novel heuristics to consistently perform better and in sub-
stantially smaller time than other partitioning algorithms, such as random cutting or
min-edge cutting.

Algorithms that find a good partitioning of highly unstructured graphs are critical
for developing efficient solutions. For example, large-scale numerical simulations on
parallel computers, this partitioning must be done so that the number of elements as-
signed to each processor is the same (balance the computations among the processors),
and the number of adjacent elements assigned to different processors is minimized
(minimize the communication). This logic may be implemented to a single CPU, that
processes partitions sequentially while taking advantage of their spatial locality (min-
imum communication between subgraphs).

As already mentioned, partitioning a graph offers many advantages to the compu-
tation stage as we will see briefly in Section 3.2.2. Thus, it is important to apply a
locality-aware graph partitioning algorithm that takes into account graph properties
and produces high-quality partitioning.

1Minibatches - refers to equally sized subsets of the dataset over which the weights are updated.

PUBLIC
 VERSIO

N

3.2. Software acceleration 17

METIS can partition an undirected graph into a user-specified number k of parti-
tions using either the multilevel recursive bisection or the multilevel k-way partitioning
paradigms. Since multilevel k-way partitioning algorithm provides additional capabil-
ities (e.g., minimize the resulting subdomain connectivity graph, enforce contiguous
partitions, minimize alternative objectives, etc.) is the paradigm selected for partition-
ing datasets in the rest of this work.

3.2 Software acceleration
This sort of technique achieves acceleration by enhancing the efficiency of the model’s
computing process via software, allowing it to operate faster on ordinary CPUs/GPUs.
Techniques such as node reordering, faster scheduling of matrix multiplications, and
graph partitioning are a few examples.

3.2.1 HAG
Hierarchically Aggregated computation Graphs (or HAGs) [19] is a novel way of rep-
resenting graph neural networks. The development of such technique arises out of the
idea of reducing the highly common repeated computations during the aggregation
phase of GNNs. Thanks to this representation, the efficiency and scalability of graph
neural networks is enhanced.

The computation of a GNN consists of a set of trees (one for each node), indicat-
ing for a given node V which neighbor’s previous-layer activations are going to be
aggregated. However, those computation graphs do not take in consideration the over-
lapping computations, and hence all this redundancy generates inefficiency.

HAGs get rid of the overhead of the repeated computations by using intermediate
results of the aggregations and creating a hierarchy scheme to manage them. It is
important to note that in order to a HAG representation to be valid, it must be
equivalent. Therefore, HAG retains the same performance in accuracy but speeds up
the training and inference of the GNN.

3.2.2 PCGCN
Partition Centric Graph Convolutional Network (PCGCN) [8] is a software-based ac-
celeration method which aims to improve the efficiency of the computation of Graph
Convolutional Networks (GCN), both in memory and time performance. The critical
aspect on which PCGCN focuses in order to achieve such enhancement in comparison
to the available open source versions of GCN, is the fact that said implementations fail
when it comes to taking into account graph properties that may be critical for neural

PUBLIC
 VERSIO

N

18 Related Work

network computation, because such versions are solely based on common sparse matrix
calculations.

PCGCN is a partition-centric method that takes advantage of the locality charac-
teristic of graphs. Simultaneously, the algorithm will adjust to the sparsity of each
resultant partition, accelerating the propagation stage even more.

The GCN propagation technique in PCGCN is modified in such a manner that,
rather than considering only the graph, the operations to be performed are dependent
on each subgraph. The overall method for each layer of the neural network consists
of collecting the states from the vertices that belong to the subgraph (aggregation
phase) and for each partition, execute the partition-centric propagation. Once this
is completed for all subgraphs, the results of each are merged to generate the layer’s
output (combination phase). This is done for each layer of the model.

The advantage of PCGCN is that, due to its subgraph-centric approach, the range of
probable vertices and edges required for calculations is decreased, allowing for quicker
accesses by loading this information from the cache. This is mainly how PCGCN
exploits graph locality.

Figure 3.1: Graph partition and partion-centric processing for an undirected graph [8]

The first thing PCGCN does is the graph partitioning, it divides the complete graph
into K subgraphs where every node is included only in one of the partitions, along
with K×K blocks of edges (see Figure 3.1). In order to partition the graph in a way in
which the locality is taken in consideration, the best option is to apply a locality-aware
graph partitioning algorithm, METIS.

Once the grah partitioning is done, PCGCN moves to the partition-centric processing
of each subgraph. This stage is repeated in every layer. First of all, the neural network
transformation is calculated and divided according to the subgraphs. Hereafter, every

PUBLIC
 VERSIO

N

3.2. Software acceleration 19

partition is processed, taking in consideration not only the partition itself but also the
ones which have at least an edge connected to the subgraph being processed. The
results of the calculations are gathered in the hidden state hl

k, where l is the layer
and k the current subgraph. When the entirety of the partitions has been treated,
all the hidden states are concatenated to set up the hidden state of the layer hl (see
Algorithm 1).

Algorithm 1 Forward computation of Partition-Centric Graph Convolutional Net-
work [8]
Symbols: input graph: G = (V,E), layers: l = {1,···, L}, subgraphs: {Sk =
(Vk, Ek)|k = 1,···, K}, vertices in subgraph k: Vk, edges in subgraph k: Ek,
edges between subgraph i and j: Ei,j, features of layer l: hl (h0 indicates the input
features), weight of layer l: wl

Ensure: Partition G→{Sk|k = 1,···, K}
// calculate a L layer GCN model
for l = 1,···, L do

al = hl−1 × wl ▷ Combination
Split al→{alk|k = 1,···, K} according to subgraphs;
// execute graph propagation for each subgraph
for k = 1,···, K do

// gather and accumulate states from neighbor subgraphs
hl
k =

∑K
i=1 f(Ek,i, a

l
i) ▷ Aggregation

end for
// combine hidden states of the subgraph k
hl = concat(hl

k, ∀k ∈ {1,···, K});
end for
return hL;

In this way, PCGCN is capable of taking advantage of the locality properties of the
graph. However, the processing complexity of individual partitions may vary depending
on their sparsity, which might be inefficient. PCGCN supports two graph propagation
modes to counteract the usual uneven distribution of real-world graphs: Selective Mode
and Full Mode.

PCGCN makes use of the Selective Mode when the number of edges between the
subgraph being processed and one of its neighbor partitions is scarce, so, the compressed
sparse row (CSR) is used to store the subgraph.

For dense subgraphs, Full Mode propagation is the preferred compute mode. When
using this approach, PCGCN does not decode the vertices’ indices but instead processes
the edges sequentially. Full Mode assumes that the subgraph and the neighbor partition
are both completely connected (every node in one is connected to every node in the
other). Because it is an assumption, if a node x in one partition has no relationship

PUBLIC
 VERSIO

N

20 Related Work

(edge) with a node y in the other, a new one with value 0 is established between them.
When working with the same graph, both modes can be used simultaneously. So,

given a subgraph’s edge block, PCGCN will pick which mode to use based on the
sparsity. It should be noted that because PCGCN makes use of the graph’s locality
attribute, it is possible for this approach to perform better or worse depending on the
input graph (and its properties).

PCGCN takes advantage of the Tensor Core acceleration offered by the latest versions
of NVIDIA GPUs. To this end, they design various GPUs-specific optimizations for
the partition-centric processing framework and the dual-mode subgraph computing
strategy. PCGCN is a tool designed, evaluated and proposed to run on the GPU and
efficiently execute GCNs. However, the work we present here is CPU-PCGCN a CPU
alternative to PCGCN to efficiently execute GCN.

3.3 Hardware acceleration
By creating specialized hardware, hardware-based accelerators attempt to manage the
computational needs of GCNs and increase the efficiency of their calculations. There
are many hardware acceleration models, being the ones that have achieved the largest
performance improvements AWB-GCN [37], EnGN [38] and HyGCN[39]; each imple-
menting a specific dataflow which is heavily co-designed with the microarchitecture.

3.3.1 AWB-GCN
The Autotuning-Workload-Balancing GCN accelerator mainly advocates for an aggres-
sive adaptation to the structural sparsity of the GNN. The authors motivate their de-
sign by analyzing the power-law distribution of most graphs, arguing that some parts of
the computation will be dense and others extraordinarily sparse, creating unbalances.

3.3.2 EnGN
Among the first accelerators to appear, EnGN presents a unified architecture heavily
inspired by CNN accelerators. The GNN is fundamentally treated as concatenated
matrix multiplication of feature vectors, adjacency matrices, and weights, all scheduled
in a single dataflow.

3.3.3 HyGCN
Hybrid architecture GCN Accelerator (HyGCN) arises from the observation that GNNs
have two major alternating phases with opposing computing demands (memory and
computation). Then, for the GCN model, HyGCN proposes a hybrid design with two
independent engines, one for aggregation and the other one for combination.

PUBLIC
 VERSIO

N

4 CPU-PCGCN
In this work, we present CPU-PCGCN [40], a PCGCN implementation on top of
PyGCN [23], solely based on CPU that enhances cache-efficiency and memory per-
formance to efficiently execute GCNs, and implemented on top of the popular deep
learning framework PyTorch [41]. This is particularly important for users to leverage
GCNs in more data analysis applications.

As we demonstrate in Chapter 5, where we evaluate the performance of CPU-
PCGCN by executing a typical GCN algorithm on a variety of real-world and syn-
thetic datasets, our implementation of PCGCN outperforms the baseline implementa-
tion (PyGCN), by a factor of up to 3.94×.

Despite the fact that PCGCN discusses the usage of Tensors in modern GPUs ar-
chitectures to further improve graph propagation in some stages, we have chosen a
different CPU-running paradigm. This opens up the application of CPU-PCGCN to
other fields, such as edge computing or IoT, where the devices used for processing have
computational power limits and non-GPU architectures.

Among its main features, CPU-PCGCN is capable of running both models, the based
PyGCN (GCN) implementation and the PCGCN (CPU-PCGCN) model.

Let’s start with a high-level explanation of how our implementation works. Fig-
ure 4.1 depicts the model’s flowchart, which clearly shows the many phases it goes
through.

First and foremost, if the user has supplied any parameters, read them and load
them, this is the Read Parameters stage. Examples of parameters can be the unique
seed for the unpredictability of the libraries, the GCN specific parameters, like the
weight_decay or dropout ratio, etc. Then, it follows the process of building a synthetic
dataset if the user has requested so, or pre-processing an existing dataset (either real or
synthetic); we will briefly explain both phases in Section 4.1. Although we will discuss
synthetic dataset generators in Section 5.1 along with their properties.

After the dataset has been loaded and pre-processed, which entails having the ad-
jacency matrix, features matrix, and labels in the right format, the model can be
computed.

As previously mentioned, the model can be run either using CPU-PCGCN or the
model based implementation, PyGCN; let’s suppose the user decides to go for CPU-

PUBLIC
 VERSIO

N

22 CPU-PCGCN

PCGCN, then we partition the input graph into N subgraphs using the locality-aware
partition algorithm, METIS (see Section 4.2), and then calculate the edge blocks (ver-
tices and edges of each partition) –details in Section 4.3. Only after we can call the
training stage of the model.

In fact, the training stage is divided into four distinct phases: forwarding (the only
phase where, depending on the implementation, GCN computation or CPU-PCGCN
is used), error calculation (examines the difference in error induced by the model),
backpropagation using the gradient (i.e. linear regression), and model weight update
(weights are updated so the next time the output matches).

Reached this point, let’s step back and take a look at Figure 4.2 which also provides
a high-level visualization of the model we propose. Let’s use this figure to further
explain what comes next, the forwarding of the model.

As it can be seen, the model contains two different hidden layers, named GCN or
CPU-PCGCN. Indeed both layers are identical (architecturally speaking) and only dif-
fer in the way of computing the input parameters (the former being the complete graph
in a compressed format, and the latter being the subsequent partitions of the graph,
also in a compressed format). We will enter in detail and go through the algorithms of
each of these layers in Section 4.4. By now, in GCN vs CPU-PGCN we will highlight
the most important features.

In-between we have several different activation functions, like ReLU, an applied
Dropout [42] to the previous output (during training, uses samples from a Bernoulli
distribution to randomly zero some of the components of the input tensor with proba-
bility p), and finally a Softmax [43] activation.

After the model has been trained, we execute the inference step, which involves re-
running only the forwarding of the model with a new set of data.

All of this work is available on a public git repository1, where the interested reader
can find instructions on library requirements, how to install or run the model etc.,
along with a detailed description of all the parameters accepted and clear examples.

4.1 Datasets
CPU-PCGCN admits two kinds of graph datasets, real-world ones, like Cora2 or
PubMed3 [26] and synthetic ones. In the case of synthetic ones, CPU-PCGCN is
integrated along with two different tools that are able to generate this kind of graphs,

1https://github.com/NicolasMeseguer/pcgcn
2https://relational.fit.cvut.cz/dataset/CORA
3https://pubmed.ncbi.nlm.nih.gov/download/

PUBLIC
 VERSIO

N

https://github.com/NicolasMeseguer/pcgcn
https://relational.fit.cvut.cz/dataset/CORA
https://pubmed.ncbi.nlm.nih.gov/download/

4.1. Datasets 23

Figure 4.1: Flowchart of CPU-PCGCNPUBLIC
 VERSIO

N

24 CPU-PCGCN

Figure 4.2: CPU-PCGCN Model

PaRMAT [25] and Graphlaxy4, thes two tools will be later explained in Chapter 5.
In the case of real-world ones, we are using the datasets in a preprocess format from

the planetoid repository5, for storage convenience and with some preprocess already
done, as the name suggest.

Regarding the pre-processing step of the datasets, we must highlight two major
limitations we already addressed at Section 2.6; (1) given a node V , sum all feature
vectors of neighbor vertices but itself and (2) not normalizing matrix A and thus, the
multiplication will completely outscale the proportion of the feature vectors.

The first issue can be easily solved by adding the identity matrix I to the adjacency
matrix A. The second issue, however, is a bit more tricky: we first make the adjacency
matrix symmetric, A = A + (AT × (AT > A)− A× (AT > A)), doing this we enforce
the matrix to be symmetric. Further details about this specific technique can be found
in: https://github.com/yao8839836/text_gcn/issues/17

With these two tricks already done, we resolve the issue already mentioned above.
We can then normalize the adjacency matrix A, taking into account that the sum of
the rows must be equal to 1, and the features matrix. The representations of both of
these matrices are in a compressed format (see Figure 2.7), the former being in COO
representation and latter in CSR. In the case of labels, they are stored in a one-hot
encoding vector.

Once the datasets are ready to be used (loaded and processed), the user could opt
to run the default GCN model, which would jump right into the training stage, or they

4https://github.com/BNN-UPC/graphlaxy
5https://github.com/kimiyoung/planetoid

PUBLIC
 VERSIO

N

https://github.com/yao8839836/text_gcn/issues/17
https://github.com/BNN-UPC/graphlaxy
https://github.com/kimiyoung/planetoid

4.2. Partitioning the graph 25

could opt for running the CPU-PCGCN model.

4.2 Partitioning the graph
For a given graph, in order to process it in the CPU partition-centric computing scheme,
the input graph should be firstly partitioned into a set of subgraphs. Therefore, CPU-
PCGCN applies a 2D graph partitioning. As shown in Figure 3.1, it partitions the
whole graph into K subgraphs and thus creates K disjoint vertex blocks and K ×K
edge blocks where Ei,j represents edges between two vertex blocks Vi and Vj.

Recently, there have been proposed plenty of graph partitioning algorithms, e.g.,
random partitioning, min-cut partitioning, etc. We notice that a random partitioning
will hurt the locality of graphs because it ignores the locality and randomly assigns
vertices to partitions. Thus, we choose the locality-aware algorithm as the graph
partition method to enhance the locality.

When utilizing CPU-PCGCN, the user must provide the number K of subgraphs
into which the input graph should be partitioned using METIS. The conversion of the
adjacency matrix to METIS input format is optimised to be performed with the sparse
COO format so that the conversion time is relative to zero (≃ 0) regardless of the
matrix size.

When processing a synthetic graph, various particular instances are considered, such
as when the number of vertices is odd even though the graph is symmetrical; to fix
this, we delete the initial edge of the graph, [0][0], and thus, we make it even so that
METIS can partition it with no problems.

In terms of METIS, it ensures high-quality and even partitions (balances the number
of vertices in all partitions), though because the graph is symmetric, it should be noted
that in the majority of cases, the triangular subgraphs K may have the same amount
of vertices and sparsity, which opens up a new window of speedup that we will discuss
shortly.

4.3 Calculating edge blocks and their sparsity
Continuing what we have mentioned above, once we have obtained the partitioning
of METIS, we can start to form the edge blocks. Thanks to the symmetry of the
adjacency matrix we know that the upper triangular of the edge blocks equals to the
transpose of the lower triangular (Figure 3.1), i.e. lets suppose we have a variable called
edge_blocks which is a matrix of matrices, then we assume that: edge_block[0][1] =
(edge_block[1][0])T , using this approach we can easily compute only the identity and
lower triangular, form the edge blocks, calculate its corresponding sparsity and then,

PUBLIC
 VERSIO

N

26 CPU-PCGCN

transpose the results to obtain the upper triangular.

This approach has been demonstrated to achieve an up to 9× speedup compared to
the previous implementation where all the edge blocks were computed sequentially not
taking into account matrix properties, and normalize characteristics.

The sparsity of each of the subgraphs is represented by an integer between 0 and
100, meaning 100 is a fully sparse matrix (i.e. there is no edge within the edge block).
We calculate the sparsity of a given subgraph K as:

100− (
Ei,j

Vi × Vj

× 100) (4.1)

Being Ei,j the number of edges between subgraphs i and j, Vi vertices of subgraph
i and Vj vertices of subgraph j.

4.4 GCN vs CPU-PCGCN
As mentioned, CPU-PCGCN is able to run both models, Algorithm 2 shows the feed-
forward computation steps of a 2 layer GCN model. It is important to note that this
layers can only perform the aggregation phase in one of two ways: either dense matrix
multiplication or sparse matrix multiplication. It cannot do both, that’s the special
ingredient of PCGCN, which will discuss later on.

Algorithm 2 Forward computation of GCN with 2 layers
Symbols: input graph: G = (V,E), layers: l = {1,···, L}, features of layer l: hl

(h0 indicates the input features), weight of layer l: wl

// calculate a 2 layer GCN model
for l = 1,···, 2 do

al = hl−1 × wl ▷ Combination

hl = spmm(adjmatrix × al) ▷ Aggregation using Sparse Matrix-Multiplication
OR
hl = mm(adjmatrix × al) ▷ Aggregation using Dense Matrix-Multiplication

end for
return h2;

A question that is often asked is the equivalence of CPU-PCGCN and GCN models:
CPU-PCGCN only changes the order of calculating neighbors of a given vertex com-
pared to the original GCN. The operations in the graph propagation stage of GCN are
element-wise multiplication and add, which are commutative and associative. Thus, the

PUBLIC
 VERSIO

N

4.4. GCN vs CPU-PCGCN 27

changed order does not affect the results because of the property of commutative and
associative operations [44]. Therefore, the CPU-PCGCN is equal to the original GCN
and can produce the same numerical results, hence the same per-epoch convergence.

Having understood the two phases of a GCN layer (aggregation and combination),
let’s explain how our CPU-PCGCN works.

In CPU-PCGCN, we propose to leverage the locality of real-world graphs to acceler-
ate GCN computing by accelerating the graph propagation. Specifically, CPU-PCGCN
introduces a partition-centric processing scheme (a) in the graph propagation stage,
which makes PCGCN achieve locality-friendly in processing graphs. Moreover, a dual
mode subgraph computing (b) method is introduced to further accelerate the graph
propagation by design different computing mode according to the density (sparsity) of
a subgraph.

Algorithm 3 Forward computation of CPU-PCGCN with 2 layers
Symbols: input graph: G = (V,E), layers: l = {1,···, L}, subgraphs: {Sk =
(Vk, Ek, SSk)|k = 1,···, K}, vertices in subgraph k: Vk, edges in subgraph k: Ek,
sparsity of the subgraph k: SSk, edges between subgraph i and j: Ei,j, features of
layer l: hl (h0 indicates the input features), weight of layer l: wl

Ensure: Partition G→{Sk|k = 1,···, K}
// calculate a 2 layer CPU-PCGCN model
for l = 1, ..., 2 do

al = hl−1 × wl ▷ Combination
Split al→{alk|k = 1,···, K} according to subgraphs;
// execute graph propagation for each subgraph
for k = 1,···, K do

// dual-mode computing
if SSk > args.threshold then

hl
k =

∑K
i=1 fspmm(Ek,i, a

l
i) ▷ Sparse Aggregation

else
hl
k =

∑K
i=1 fmm(Ek,i, a

l
i) ▷ Dense Aggregation

end if
// combine hidden states of the subgraph k
hl = concat(hl

k)
end for

end for
return h2;

PUBLIC
 VERSIO

N

28 CPU-PCGCN

a. Partition-Centric Graph Processing:
CPU-PCGCN modifies the graph propagation stage of GCN from a whole graph
computing scheme to a subgraph-centric one. Algorithm 3 shows the feed-forward
computation steps of a 2 layer model. For each GCN layer, the hidden state from the
previous is transformed by a fully connected neural network, which is the same as the
original GCN (combination). Then, for each subgraph, it gathers and accumulates
states from itself and neighbor subgraphs to execute the partition-centric graph
propagation (aggregation). The outputs of each subgraph are combined as the
output of this layer.
After partitioning the graph into a set of subgraphs, CPU-PCGCN can apply the
partition centric processing. For layer l of the model, CPU-PCGCN calculates
the neural network transformation al and then partitions it to corresponding sub-
graphs. Then, CPU-PCGCN processes these subgraphs one by one. For subgraph
Sk, CPU-PCGCN traverses all the subgraphs that have edges Ek,i connected to Sk,
and processes the edge block. For each edge in Ek,i, it calculates the multiplication
of data in the source vertex and the edge, and accumulates it in hl

k, this can be done
in two different ways, thus, it is a dual-mode computing. After all of the neighbor
subgraphs being processed, it will generate the hidden state hl

k for vertices in Sk.
Finally, the concatenated hl

k(∀k ∈ {1,···, K}) is the output hidden state hl of
layer l.

Because the range of source and destination vertices is confined to the subgraph,
the partition-centric processing technique is memory hierarchy friendly. As a result,
processing edges with the same sources or destinations can load data from the cache,
which is especially useful for graphs with a high degree of locality.

b. Dual Mode Subgraph Computing Strategy
To take advantage of graph locality, CPU-PCGCN processes the GCN from the
subgraph perspective for each layer. Real-world graphs, according to Section 2.4,
typically have irregular distributions. The irregularity of a graph frequently results
in variable densities in subgraphs. We offer the dual-mode subgraph computing
approach based on density to significantly speed subgraph calculation.

a) Selective Mode
When there are a few edges in the edge block Ek,i of the subgraph Sk and Si

in the layer l of the model, CPU-PCGCN uses a selective mode to process this
edge block. Then, according to GCN, the features of the source vertex will be
multiplied with the scalar value on the edge on the fly, and the result will be
added to the hidden state hl

k using the function fspmm(Ek,i, a
l
i). This subgraph

layout is in a compressed matrix format (COO).

PUBLIC
 VERSIO

N

4.4. GCN vs CPU-PCGCN 29

b) Full Mode
When there are lots of edges in a subgraph, the decoding procedure in the
selective mode may lead to a huge impact on the processing efficiency. We
introduce the full mode, it assumes the subgraph Sk and Si is fully connected,
i.e., each vertex in Sk is connected to all the vertices in Si. If there is no edge
ep→q between vertex p and q, it will insert this edge with value 0 on the edge.
This mode uses the function fmm(Ek,i, a

l
i). Different with the selective mode,

the full mode processes all the edges in the fully connected chunk sequen-
tially instead of decoding the indexes of edges and fetching the corresponding
vertices.

c) Hybrid Mode
The above selective mode is suitable for sparse edge blocks, while the full mode
is better for dense edge blocks. Due to the irregularity, a real-world graph may
contain both sparse and dense edge blocks. The computing complexity of both
modes mostly relates to the sparsity of an edge block. So, we take the sparsity
SSk to select the processing mode for a given edge block K.

Specifically, we profile the runtime of full and selective modes for a block of
sparsity p, according to a threshold set by the user, or by default (60%) if not
specified. We choose selective mode if SSk > 60%, otherwise we select full
mode for the processing of a given edge block.

Several methods for parallelizing part of the calculation at layer level have been
proposed to further speedup the model on the CPU without achieving any improvement
in time. In the next chapter, we will examine this proposals along with a profiling to
further understand where the time is being consumed.

PUBLIC
 VERSIO

N

PUBLIC
 VERSIO

N

5 Evaluation
In this chapter, we demonstrate the efficiency of CPU-PCGCN by evaluating it on real-
world and synthetic datasets. Section 5.1 describes the methodology of the experiments
(environment setup, synthetic dataset generators, dataset properties, etc.). Section 5.2
shows the overall runtime comparisons of CPU-PCGCN and the baseline PyGCN.

5.1 Mehodology
a. Experiment setup

We evaluate CPU-PCGCN on a single platform equipped with dual 2.4 GHz In-
tel Xeon E5-2640v4 processors (20 physical cores in total), 125 GB memory, and
NVIDIA GeForce GTX 780 GPU. The installed operating system is Ubuntu 16.04.

We compare CPU-PCGCN to the open-source GCN implementation [23] on Py-
Torch v1.2.0 [41] (PyGCN), SciPy [45] v1.5.4 and Python NumPy [46] v1.19.5. For
fair comparison, all of the baseline systems are the latest stable versions (compared
with the versions used in PyGCN), and using the same Python version, 3.6.15.

We focus on metrics for system performance, for example, time to train one epoch
of data over 5 different executions to discard variability. We have proved the equiv-
alence of GCN and CPU-PCGCN in Section 4.4. Thus, CPU-PCGCN produces the
same numerical results compared with GCN. We report the average results over 100
epochs if no specified.

b. Synthetic Dataset Generators
As noted in Section 4.1, to evaluate the superiority of CPU-PCGCN in graphs of
different sparsity, we use the PaRMAT and Graphlaxy. Also to demonstrate the
hybrid computing mode when using graphs of irregular sparsity.

a. PaRMAT [25], is a multi-threaded (parallel) RMAT [47] graph generator. A
widely used graph generator, to generate synthetic graphs characterized by the
skewed distribution and fractal community structure which are similar to real-
world graphs.

b. Graphlaxy is a tool developed by Barcelona Neural Networking Center (BNN)
who has been a partner in this project. Graphlaxy is a tool used to create

PUBLIC
 VERSIO

N

32 Evaluation

synthetic graph datasets with an even distribution over a set of metrics (or pro-
jection) using ’Nash Bargain Scheme’ optimization. It is available at
https://github.com/BNN-UPC/graphlaxy.

Both of these tools are explained, along with examples on the public repository that
has been derived as part of this work [40].

With the implementation of these two dataset generating tools, the window is open
for further dataset generators that exploit other types of graph properties and, as a
result, determine if CPU-PCGCN may be exploited in the same way.

c. Datasets

Table 5.1 lists the real-world and synthetic datasets used for evaluation including,
PubMed citation network (pubmed) [26], Cora scientific dataset (cora) [48] and cite-
seer citation network (citeseer) [49].

In PaRMAT, we set a variable number of vertices and generate different num-
ber of edges to achieve the graph density of {0.01%, 0.06%, 0.12%, 1%} (marked as
PaRMAT-density, e.g. PaRMAT-1 indicates a PaRMAT with 1% of density)1. As
some datasets do not have features or labels that are required by the GCN, we use
a random distribution to generate the vertex features and the vertex labels. The
column feature in Table 5.1 represents the size of vertex feature vector, and the label
column means the number of label classes, for the synthetic datasets the clustering
coefficient has not been measured, NM2.

Datasets #vertex #edge #feature #label clustering coefficient
cora 2.7K 5.4K 1.4K 7 0.24

citeseer 3.3K 4.7K 3.7K 6 0.14
pubmed 19.7K 108.3K 500 3 0.06

PaRMAT-0.01 996 8K 259 30 NM
PaRMAT-0.06 1K 30K 731 61 NM
PaRMAT-0.12 100 600 48 6 NM

PaRMAT-1 996 800K 6.8K 405 NM

Table 5.1: Datasets used in evaluation. (K: Thousands)

1These datasets are available in the git repository, with the following name (in order with the density):
Magenta_Spoonbill, Red_Magpie, Lime_Hawk and Silver_Parrot

2Not Measured: since these are synthetic datasets, we just consider their density, not the clustering
coefficient.

PUBLIC
 VERSIO

N

https://github.com/BNN-UPC/graphlaxy

5.2. Experimental Results 33

Due to some server limitations we have not been able to generate synthetic datasets
with a higher density of edges.

5.2 Experimental Results
a. Layer-level-parallelism

At first the computation time of a single iteration in the CPU-PCGCN technique
was severely superior to that of its GCN counterpart. This encouraged the study of
the different operations done at the layer level in order to profile the CPU-PCGCN
forward function for a single iteration.

a) V1, Torch implementation, all the computation that is done at the layer level
is done with the Torch library.

b) V2, Concat included, the concatenation phase of the layer hl
k is performed

immediately after its computation.
c) V3, Torch parallel, same as V1 except that the computation of ala is parallelised

with task-level parallelism using K threads.
d) V4, NumPy implementation, the computation of the layer has been done with

NumPy, including the necessary conversions to PyTorch.
e) V5, NumPy parallel, like V4, an unsuccessful attempt has been made to par-

allelise the computation of al using K threads.

As a result, and already mentioned in Section 4.4, the computation of the layer for
CPU-PCGCN has gone through several phases. The computation performed at the
layer level is strongly linked to the libraries with which it has been developed, so
data conversions are necessary. Table 5.2 shows the base implementation and the
evolution it has gone through. These results have been obtained by partitioning the
graph into 4 subgraphs and with the cora dataset. Figure 5.1 shows the time in the
form of a graph.

Time (s)
Phases V1 V2 V3 V4 V5

Splitting al 0.098 0.0959 0.185 0.004 0.0065
Graph propagation 0.001 0.578 0.604 0.018 0.0196Concat 0.642
Torch conversion NA NA NA ≃ 0 ≃ 0

Total (s) 0.74 0.67 0.789 0.022 0.026

Table 5.2: Profiling (s) of CPU-PCGCN layer computation

PUBLIC
 VERSIO

N

34 Evaluation

As it can be seen, task-level parallelism for the acceleration of the layer computation
seems to add more overhead than speedup (this is due to the cost of keeping threads
in a queue + initialization). Take a look at the two blue cells from V3 and V5,
comparing both of them to the sequential version (V2 and V4 respectively) the time
consumed to create a single thread is up to 0.046 for V3 and 0.001 for V4, which is
exactly 1/4th of the time of splitting al (remember we were using the same number
of threads as partitions, 4). This shows the slightly poor performance the task-level
parallelism offers, almost twice.

Figure 5.1: Profiling of the different phases of the computation at layer level

As a consequence of this profiling, it is clear how substantially the time has been
reduced by modifying the implementation. NumPy employs low-level libraries like
MKL to accelerate computing, allowing for quicker execution of operations such
as matrix transposition or data accesses. This provides the possibility to further
improvements with future versions of these libraries.

b. Overall Performance
We evaluate the overall model performance by comparing it with state-of-the-art
base model implementation PyGCN on PyTorch.
Table 5.3 shows the end-to-end performance. Overall, CPU-PCGCN achieves an
average 2.11× speedup (up to 3.94×) over the best one of baselines. We com-
pare the base implementation PyGCN (GCN) using either sparse (S) or dense (D)
computation vs CPU-PCGCN with an specific amount of partitions denoted as
CPU-partitions. A more general view can be seen in Figure 5.2.

PUBLIC
 VERSIO

N

5.2. Experimental Results 35

Time (s)
Datasets GCN (D) GCN (S) CPU-2 CPU-4 CPU-8 CPU-16 speedup

cora 88.74 81.53 46.74 48.58 56.96 72.53 1.74x
citeseer 82.61 69.42 46.11 49.58 56.90 74.97 1.50x
pubmed 1,259.93 795.184 248.56 303.22 347.44 446.47 3.19x

PaRMAT-0.01 30.70 28.86 19.78 21.71 25.36 33.12 1.45x
PaRMAT-0.06 43.01 37.81 21.67 23.70 26.31 34.06 1.74x
PaRMAT-0.12 3.76 2.41 1.9 2.04 2.63 4.54 1.26x

PaRMAT-1 1,171.2 1,050.3 266.48 229.98 262.54 387.72 3.94x

Table 5.3: The overall runtime (s) of GCN and CPU-PCGCN, denoted as CPU-partitions
in powers of two

As it can be seen, in all cases CPU-PCGCN obtains an improvement in time. More-
over, in the case of higher density graphs (only for PaRMAT-1), it can be seen
how the number of partitions (4) benefits the computation time. Finally, it should
be noted that increasing the number of partitions to 16, even though the resulting
subgraphs may be very dense, does not improve the time neither the cache locality.
The computational cost of processing 16 partitions is higher than computing 4, for
example see PaRMAT-1.

To evaluate the contribution of selective and full execution modes, we also run
CPU-PCGCN modifying the sparsity threshold to force one of the dual-modes to
be executed. Table 5.4 shows the results compared to the best time obtained previ-
ously. The table names are denoted as CPU-partitions-threshold.

Time (s)
Datasets best-time CPU-4-20 CPU-4-40 CPU-16-20 CPU-16-40

cora 46.74 53.17 50.65 74.81 71.27
citeseer 46.11 48.84 48.88 74.18 74.47
pubmed 248.56 287.19 288.13 445.91 446.56

PaRMAT-0.01 19.78 21.47 21.27 32.57 32.78
PaRMAT-0.06 21.67 23.28 23.55 33.78 34.38
PaRMAT-0.12 1.9 2.04 2.06 4.72 4.77

PaRMAT-1 229.98 224.13 220.90 398.34 403.47

Table 5.4: The overall runtime (s) of varying sparsity, denoted as CPU-partitions-threshold

PUBLIC
 VERSIO

N

36 Evaluation

As it can be seen, in most cases, changing the sparsity required to run the opera-
tion in sparse mode tends to result in a worse computation time. However, if we
look at PaRMAT-1 (the densest graph) we can see that a slight improvement in
time is gained. From this we can project how increasing the density in the graphs
(characteristics of real-world graphs) leads to progressively better computation time.
On the other hand, if we look at PaRMAT-0.01 (very dense graph) when lowering
the required sparsity level we still get the same time, this is because the graph is
already processed in a dense way automatically.
Finally, if we look at the PubMed dataset (which is very sparse) we can see that
by increasing the number of partitions and reducing the required sparsity, the time
increases; probably some partition is running in dense mode and therefore all the
zero values are being penalised.
In the rest of the cases, it can be observed that the computation time varying the
sparsity is very similar.

Figure 5.2: Runtime (s) of the different datasets

PUBLIC
 VERSIO

N

6 Conclusions
In this work, we present CPU-PCGCN, a CPU-only alternative to PCGCN for fast
GCN computation. Unlike PCGCN, this new implementation opens up the application
of PCGCN to other fields, such as edge computing or IoT, where the devices used
for processing have computational power limits and non-GPU architectures. In short,
CPU-PCGCN perceives a graph as a set of links between vertices and partitions instead
of a sparse adjacent matrix, and depending on their sparsity, it selects a computation
mode (full or selective). Despite using only the CPU, our model already offers severe
advantages over native GCN processing.

We presented and developed system-level optimizations to achieve high performance
by leveraging graph properties. PCGCN is a stepping stone in building systems for
GNNs.

Two fundamental contributions have been made in this work:

1. CPU-PCGCN : a new implementation of PCGCN specifically tailored to efficient
processing of both training and inference of GCN models in CPU-constrained
computing platforms. CPU-PCGCN has been designed to facilitate integration
with popular third-party tools such as METIS, aimed to explore different par-
titioning techniques, and PaRMAT and Graphlaxy for generation of synthetic
graphs under different user-defined features.

2. Detailed evaluation of CPU-PCGCN : a detailed evaluation of CPU-PCGCN, in-
cluding a thorough profiling showing the time spent in each phase and a complete
evaluation using both real and synthetic graphs.

Having developed this work on top of high-performance libraries, it opens up the
possibility of further research in the field of GCNs using the work proposed here.

Because the work we have conducted is constrained by a number of hours and a
deadline, below are some potential avenues for future extensions of CPU-PCGCN.
These are as follows:

a. Accurate sparsity. As of now, the sparsity threshold is predefined on a 60% value,
which means that, if the sparsity of a given subgraph is bigger than 60%, it will be
computed using the sparse matrix multiplication, otherwise, it will do with dense
matrix multiplication. This threshold is defined based on a previous analysis of the
datasets and a heuristic determination. As future work, we would like to study/find
an accurate threshold that determines the computation mode.

PUBLIC
 VERSIO

N

38 Conclusions

b. CPU+GPU acceleration. CPU-PCGCN is based solely on CPU computation, whereas
PCGCN is a GPU-standalone implementation. As contemporary computing plat-
forms are heterogeneous, i.e., they integrate both CPU and GPU architectures, we
will explore a new CPU+GPU -PCGCN version where both CPU and GPU collab-
orate for processing the GCN. More specifically, where either the CPU or the GPU
is used to process a subgraph depending on the properties (subgraph density, size,
clustering coefficient, etc.) that best suite for each kind of architecture –CPUs are
typically more efficient to exploit irregular task-level parallelism (sparse computa-
tion), while GPUs excel at more regular data-level parallelism (dense computation).

c. Comprehensive datasets. Conduct a more thorough study of the datasets, varying
only one of their properties at a time, like the sparsity, the density, increasing only
the edges, etc. In addition, the hybrid mode could be varied so that the graph is
computed only in dense or sparse, and then, using the hybrid mode. In this way we
can do a study for each graph and see what time the hybrid mode gets, if it only
uses one of the two modes (same time), or if it alternates between them for different
subgraphs (less time).

d. Optimizations to the CPU code. Finally, we would like to employ TVM [50], an
automated end-to-end optimizing compiler for DL. Using this tool, we could obtain
considerably more optimized CPU code (including different types of parallelism,
computational-layer acceleration, etc.). As an alternative, if we want to employ
GPU Tensor core acceleration, we may use this tool to optimize the CUDA code in
charge of doing the calculation.

PUBLIC
 VERSIO

N

Bibliography
[1] Zhenzhu Meng, Yating Hu, and Christophe Ancey. Using a data driven approach

to predict waves generated by gravity driven mass flows. Water, 12, 02 2020. doi:
10.3390/w12020600.

[2] Hamza Jaffali. Illustration of an artificial neuron., 2022. URL https:
//www.researchgate.net/figure/Illustration-of-an-artificial-neuron_
fig1_335442226.

[3] Iron Hack. What is machine learning?, 2022. URL https://www.ironhack.com/
en/data-analytics/what-is-machine-learning.

[4] Benjamin Sanchez. A gentle introduction to graph neural networks, 2022. URL
https://distill.pub/2021/gnn-intro/.

[5] Matt Eding. Sparse matrices, 2022. URL https://matteding.github.io/2019/
04/25/sparse-matrices/.

[6] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard
Alarcón. Computing graph neural networks: A survey from algorithms to
accelerators. arXiv, 2020. doi: 10.48550/ARXIV.2010.00130. URL https:
//arxiv.org/abs/2010.00130.

[7] Thomas Kipf. Graph convolutional networks, 2022. URL http://tkipf.github.
io/graph-convolutional-networks/.

[8] Chao Tian, Lingxiao Ma, Zhi Yang, and Yafei Dai. Pcgcn: Partition-centric pro-
cessing for accelerating graph convolutional network. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 936–945, 2020.
doi: 10.1109/IPDPS47924.2020.00100.

[9] IBM. What is machine learning?, 2022. URL https://www.ibm.com/cloud/
learn/machine-learning.

[10] Christopher Tomas. Common uses for cnns,
2022. URL https://towardsdatascience.com/
an-introduction-to-convolutional-neural-networks-eb0b60b58fd7.

[11] Davis David. What is an rnn in dl?, 2022. URL https://hackernoon.com/
what-is-an-rnn-recurrent-neural-network-in-deep-learning.

PUBLIC
 VERSIO

N

https://www.researchgate.net/figure/Illustration-of-an-artificial-neuron_fig1_335442226
https://www.researchgate.net/figure/Illustration-of-an-artificial-neuron_fig1_335442226
https://www.researchgate.net/figure/Illustration-of-an-artificial-neuron_fig1_335442226
https://www.ironhack.com/en/data-analytics/what-is-machine-learning
https://www.ironhack.com/en/data-analytics/what-is-machine-learning
https://distill.pub/2021/gnn-intro/
https://matteding.github.io/2019/04/25/sparse-matrices/
https://matteding.github.io/2019/04/25/sparse-matrices/
https://arxiv.org/abs/2010.00130
https://arxiv.org/abs/2010.00130
http://tkipf.github.io/graph-convolutional-networks/
http://tkipf.github.io/graph-convolutional-networks/
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://towardsdatascience.com/an-introduction-to-convolutional-neural-networks-eb0b60b58fd7
https://towardsdatascience.com/an-introduction-to-convolutional-neural-networks-eb0b60b58fd7
https://hackernoon.com/what-is-an-rnn-recurrent-neural-network-in-deep-learning
https://hackernoon.com/what-is-an-rnn-recurrent-neural-network-in-deep-learning

40 Bibliography

[12] Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolu-
tional networks with markov random field reasoning for social spammer detection.
Proceedings of the AAAI Conference on Artificial Intelligence, 34:1054–1061, 04
2020. doi: 10.1609/aaai.v34i01.5455.

[13] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. Bayesian
graph convolutional neural networks for semi-supervised classification, 2018. URL
https://arxiv.org/abs/1811.11103.

[14] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface
prediction using graph convolutional networks. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f507783927f2ec2737ba40afbd17efb5-Paper.pdf.

[15] Jie Zhou, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural networks:
A review of methods and applications. CoRR, abs/1812.08434, 2018. URL http:
//arxiv.org/abs/1812.08434.

[16] Inneke Mayachita. Understanding graph convolutional net-
works, 2022. URL https://towardsdatascience.com/
understanding-graph-convolutional-networks-for-node-classification.

[17] Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot
learning – a comprehensive evaluation of the good, the bad and the ugly, 2017.
URL https://arxiv.org/abs/1707.00600.

[18] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small
molecular graphs, 2018. URL https://arxiv.org/abs/1805.11973.

[19] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken.
Redundancy-free computation graphs for graph neural networks, 2019. URL
https://arxiv.org/abs/1906.03707.

[20] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang
Ge, Zhiqiang Zhang, Lin Wang, Jun Zhou, Yang Shuang, and Yuan Qi. Agl:
a scalable system for industrial-purpose graph machine learning, 2020. URL
https://arxiv.org/abs/2003.02454.

[21] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving
the accuracy, scalability, and performance of graph neural networks with roc. In
I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning
and Systems, volume 2, pages 187–198, 2020. URL https://proceedings.mlsys.
org/paper/2020/file/fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf.

PUBLIC
 VERSIO

N

https://arxiv.org/abs/1811.11103
https://proceedings.neurips.cc/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification
https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification
https://arxiv.org/abs/1707.00600
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1906.03707
https://arxiv.org/abs/2003.02454
https://proceedings.mlsys.org/paper/2020/file/fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf

Bibliography 41

[22] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. Exploiting locality in graph analytics through hardware-
accelerated traversal scheduling. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–14, 2018. doi: 10.1109/
MICRO.2018.00010.

[23] Thomas N Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. arXiv preprint arXiv:1609.02907, 2016.

[24] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM JOURNAL ON SCIENTIFIC COMPUTING,
20(1):359–392, 1998.

[25] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Scalable simd-efficient
graph processing on gpus. In 2015 International Conference on Parallel Architec-
ture and Compilation (PACT), pages 39–50, 2015. doi: 10.1109/PACT.2015.15.

[26] Shobeir Fakhraei, James Foulds, Madhusudana Shashanka, and Lise Getoor. Col-
lective spammer detection in evolving multi-relational social networks. In PubMed
Collective Detection, 08 2015. doi: 10.1145/2783258.2788606.

[27] Bael Dung. What is the difference between a directed and an
undirected graph, 2022. URL https://www.baeldung.com/cs/
graphs-directed-vs-undirected-graph.

[28] Surin Der Dawra. Clustering coefficient in graph theory, 2022. URL https:
//www.geeksforgeeks.org/clustering-coefficient-graph-theory/.

[29] Jerome Junegis. Defining the clustering coefficient, 2022.
URL https://networkscience.wordpress.com/2013/09/08/
defining-the-clustering-coefficient/.

[30] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[31] Derrick Mwiti. The essential guide to gnn, 2022. URL https://cnvrg.io/
graph-neural-networks/.

[32] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. Con-
volutional networks on graphs for learning molecular fingerprints. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

PUBLIC
 VERSIO

N

https://www.baeldung.com/cs/graphs-directed-vs-undirected-graph
https://www.baeldung.com/cs/graphs-directed-vs-undirected-graph
https://www.geeksforgeeks.org/clustering-coefficient-graph-theory/
https://www.geeksforgeeks.org/clustering-coefficient-graph-theory/
https://networkscience.wordpress.com/2013/09/08/defining-the-clustering-coefficient/
https://networkscience.wordpress.com/2013/09/08/defining-the-clustering-coefficient/
https://cnvrg.io/graph-neural-networks/
https://cnvrg.io/graph-neural-networks/
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

42 Bibliography

[33] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-
works and locally connected networks on graphs, 2013. URL https://arxiv.
org/abs/1312.6203.

[34] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks, 2016. URL https://arxiv.org/abs/1609.02907.

[35] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
Cluster-GCN. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery Data Mining. ACM, jul 2019. doi: 10.1145/3292500.
3330925. URL https://doi.org/10.1145%2F3292500.3330925.

[36] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. Graphsaint: Graph sampling based inductive learning method, 2019.
URL https://arxiv.org/abs/1907.04931.

[37] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya
Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, and Martin Herbordt. Awb-
gcn: A graph convolutional network accelerator with runtime workload rebalanc-
ing, 2019. URL https://arxiv.org/abs/1908.10834.

[38] Shengwen Liang, Ying Wang, Member, IEEE, Cheng Liu, Lei He, Huawei Li,
Senior Member, IEEE, And, Xiaowei Li, Senior Member, and IEEE. Engn: A
high-throughput and energy-efficient accelerator for large graph neural networks,
2019. URL https://arxiv.org/abs/1909.00155.

[39] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. Hygcn: A gcn accelerator with hybrid archi-
tecture, 2020. URL https://arxiv.org/abs/2001.02514.

[40] Nicolas Meseguer. Cpu-pcgcn, 2022. URL https://github.com/
NicolasMeseguer/pcgcn.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library,
2019. URL https://arxiv.org/abs/1912.01703.

[42] PyTorch. Dropout, 2022. URL https://pytorch.org/docs/stable/generated/
torch.nn.Dropout.html.

[43] PyTorch. Softmax function, 2022. URL https://pytorch.org/docs/stable/
generated/torch.nn.Softmax.html.

PUBLIC
 VERSIO

N

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1609.02907
https://doi.org/10.1145%2F3292500.3330925
https://arxiv.org/abs/1907.04931
https://arxiv.org/abs/1908.10834
https://arxiv.org/abs/1909.00155
https://arxiv.org/abs/2001.02514
https://github.com/NicolasMeseguer/pcgcn
https://github.com/NicolasMeseguer/pcgcn
https://arxiv.org/abs/1912.01703
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html

Bibliography 43

[44] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, page 17–30, USA, 2012. USENIX Association. ISBN
9781931971966.

[45] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, and C J Carey. SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/
s41592-019-0686-2.

[46] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, and Matti Picus. Array program-
ming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

[47] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive
model for graph mining. In SIAM Proceedings Series, volume 6, 04 2004. doi:
10.1137/1.9781611972740.43.

[48] Arnaud Barragao. Cora dataset, 2022. URL https://relational.fit.cvut.
cz/dataset/CORA.

[49] LINQS. Citeseer dataset, 2022. URL https://linqs.soe.ucsc.edu/data.

[50] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: An automated end-to-end optimizing compiler for
deep learning, 2018. URL https://arxiv.org/abs/1802.04799.

PUBLIC
 VERSIO

N

https://doi.org/10.1038/s41586-020-2649-2
https://relational.fit.cvut.cz/dataset/CORA
https://relational.fit.cvut.cz/dataset/CORA
https://linqs.soe.ucsc.edu/data
https://arxiv.org/abs/1802.04799

	Introduction and Motivation
	Background
	Artificial Neuron
	Structure of a Neural Network
	Training vs Inference
	Graph Domain
	Graph Neural Networks
	Graph Convolutional Networks

	Related Work
	Pre-processing acceleration techniques
	Cluster-GCN
	GraphSAINT
	METIS

	Software acceleration
	HAG
	PCGCN

	Hardware acceleration
	AWB-GCN
	EnGN
	HyGCN

	CPU-PCGCN
	Datasets
	Partitioning the graph
	Calculating edge blocks and their sparsity
	GCN vs CPU-PCGCN

	Evaluation
	Mehodology
	Experimental Results

	Conclusions
	Bibliography

