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ABSTRACT

The success of Convolutional Neural Networks (CNNs) in Deep Learning (DL) has led to the
extension of the convolutional operation to non-Euclidean data, such as graph-structured citation
networks, resulting in Graph Convolutional Networks (GCNs). Given the high computational
cost of GCNs, training is typically performed on GPU architectures in large data centers. PCGCN,
a software technique implemented on GPU architectures, accelerates this process by dividing the
input graph into subgraphs and computing them based on their sparsity. However, in environ-
ments with lower performance or without GPU devices, executing PCGCN becomes challenging.
This work introduces CPU-PCGCN, an implementation of PCGCN that accelerates GCN com-
putation using the CPU, achieving up to 3.94 times speed increase compared to the base GCN
implementation.
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1 Introduction

Deep Neural Networks (DNNs), instrumental in areas such as image recognition and nat-
ural language processing, have encountered difficulties with graph data’s unique nature,
inspiring the development of Graph Neural Networks (GNNs). These specialized networks,
particularly Graph Convolutional Networks (GCNs), leverage the concept of convolutional
layers in DNNs to transform and aggregate feature information, capturing local graph struc-
tures for tasks like vertex classification. In the context of GCNs, vertices are defined by their
neighbors and connections, and an iterative process of message passing captures the com-
plex dependencies amongst them. The initial feature vector of a vertex and its neighbors’
information are used to create a state encapsulating the local graph structure. However, the
computational cost of aggregating these features can be high due to the sparsity of the adja-
cency matrix, a factor which also poses challenges for efficient graph processing acceleration.
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The architecture of GCNs, despite being based on spectral graph theory, introduces sim-
plifications for faster training and higher predictive accuracy. They aim to learn a function of
signals/features on a graph G = (V,E) by taking as input a feature vector xi for each vertex i
and an adjacency matrix A, representing the graph structure. After processing, a node-level
output Z is produced, where each layer l is a nonlinear function H(l+1) = f(H l, A) with
f(H l, A) = σ(AH lW l). Here, W l is the weight matrix for the l-th layer of the neural network,
and σ(−) is a nonlinear activation function like ReLu. GCNs address two main limitations:
(1) the inclusion of the vertex’s own feature vector in the multiplication with A, resolved by
adding the identity matrix to A, and (2) the normalization of A to maintain the scale of the
feature vectors.

Partition-Centric Processing for Accelerating Graph Convolutional Network (PCGCN)
[TMYD20] is a software accelerator designed to enhance the computational efficiency of
training Graph Convolutional Networks (GCNs) on systems equipped with GPUs. PCGCN
adopts a partition-centric method that divides the input graph into subgraphs, adjusting
to their sparsity levels and enabling more effective handling during the aggregation stage.
By exploiting the graph’s locality feature and using different processing modes depending
on the sparsity of each subgraph, PCGCN significantly accelerates the propagation stage.
For subgraphs with high sparsity levels, a sparse processing mode is chosen, using efficient
compressed representations such as COO or CSR. In contrast, for denser subgraphs, a dense
processing mode is selected. The operations in the propagation phase of GCNs are modified
to depend on each subgraph rather than the entire graph. Feature vectors belonging to the
subgraph are collected for each GCN layer in the aggregation phase and processed in a prop-
agation method for each partition. The results are then concatenated to produce the layer
output in the combination phase. This approach significantly reduces the computational
range and facilitates faster data loading from the cache, leading to overall performance and
memory efficiency improvements compared to traditional GCN models.

This work presents CPU-PCGCN2, a PCGCN implementation designed for low perfor-
mance systems, which achieves a speed increase of up to 3.94 times compared to the base
implementation of PyGCN. CPU-PCGCN is built from a GCN model written in PyTorch,
PyGCN [KW16], and uses several contemporary tools like METIS and synthetic graph gen-
erators, like Graphlaxy3 or PaRMAT [KGB15], for a broader study of the tool. Additionally,
CPU-PCGCN employs various techniques (task-level parallelism, matrix properties, or even
graph representation properties) to accelerate the computation and processing of the model.

2 CPU-PCGCN

This work introduces CPU-PCGCN, an extension of PCGCN aimed at systems consisting
only of CPUs, programmed using the popular PyTorch framework. CPU-PCGCN outper-
forms the baseline (PyGCN) by a factor of up to 3.94 times in the best cases. CPU-PCGCN
modifies the graph propagation stage of GCN from a full graph scheme to a subgraph-
centric one, which enhances the locality of graph processing. It also introduces a dual com-
putation mode based on the sparsity of a subgraph to further accelerate graph propagation.
Our proposal follows a series of well-established steps: (A) processing the datasets; (B) par-
titioning the network; (C) determining the edge blocks and their sparsity; and (D) running
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the model.
A) CPU-PCGCN supports both real-world graph datasets, and synthetic ones, using pre-

processed formats for convenience. To address the two significant limitations mentioned in
Section 1, the identity matrix I is added to the adjacency matrix A to resolve the first limita-
tion. For the second limitation, the adjacency matrix is made symmetric, A = A+(AT×(AT >
A)− A× (AT > A)), and then normalized so that the sum of the rows equals 1. The feature
matrix is also normalized. These techniques resolve the aforementioned issues, with both
matrices represented in compressed formats, the first in COO and the second in CSR. Labels
are stored in a one-hot vector.

B) CPU-PCGCN employs a 2D graph partitioning technique, dividing the complete graph
into K subgraphs, creating K disjoint vertex blocks and K ×K edge blocks where Ei,j rep-
resents the edges between two subgraphs i and j. While various partitioning algorithms
exist, random partitioning methods can harm subgraph locality by assigning vertices ran-
domly. Therefore, this work uses the METIS [KK98] partitioning tool, which requires the
input graph and the number K of subgraphs for division. Previous studies have shown that
METIS ensures high-quality, uniform partitions, balancing the number of vertices across all
partitions.

C) After obtaining the partitions, the formation of edge blocks can be initiated, taking
advantage of the symmetry of the adjacency matrix where the upper triangular of the edge
blocks is equal to the transpose of the lower triangular. This approach has been demon-
strated to achieve a speedup of up to 9 times compared to previous implementations. The
sparsity of each subgraph is represented by an integer ranging from 0 to 100, with 100 de-
noting a fully sparse matrix (i.e., no edges within the edge block).

D) The equivalence between CPU-PCGCN and GCN models has been addressed; CPU-
PCGCN only changes the order of neighbor calculations for a specific vertex compared to the
original GCN model. In CPU-PCGCN, the locality of graphs is leveraged to accelerate GCN
computation by speeding up the propagation phase. Specifically, a centered partitioning
scheme (1) in the graph propagation stage, enabling locality in graph processing. Addition-
ally, a dual-mode subgraph computation method (2) to further accelerate graph propagation
by designing calculation modes based on the density of a subgraph.

1. For each GCN layer, the previous hidden state is transformed by a MLP (combination).
Then, for each subgraph, it gathers and accumulates states from itself and neighboring
subgraphs to execute the graph propagation phase within the partition (aggregation).
The outputs are combined as the output of that layer. Since the range of source and des-
tination vertices is limited to the subgraph, this partition-based processing technique
maximizes the utilization of the memory hierarchy.

2. Processes GCN from the subgraph perspective. It introduces two modes: selective and
complete. Selective mode is used when an edge block has few edges, performing vertex
feature multiplication with the scalar value of the edge and adding the result to the cor-
responding subgraph’s hidden state (sparse function, spmatmul). On the other hand,
complete mode is employed when a subgraph has many edges, assuming complete
connectivity between subgraphs and inserting zero-value edges if necessary (dense
function, matmul). To determine the processing mode for each edge block, a hybrid
mode is introduced based on the sparsity of the edge block. The computational com-
plexity of each mode depends on the edge block’s sparsity.



3 Results

Time (s)

Datasets GCN (D) GCN (S) CPU-2 CPU-4 CPU-8 CPU-16 Speedup

cora 88.74 81.53 46.74 48.58 56.96 72.53 1.74x
citeseer 82.61 69.42 46.11 49.58 56.90 74.97 1.50x
pubmed 1,259.93 795.184 248.56 303.22 347.44 446.47 3.19x

PaRMAT-0.01 30.70 28.86 19.78 21.71 25.36 33.12 1.45x
PaRMAT-0.06 43.01 37.81 21.67 23.70 26.31 34.06 1.74x
PaRMAT-0.12 3.76 2.41 1.9 2.04 2.63 4.54 1.26x

PaRMAT-1 1,171.2 1,050.3 266.48 229.98 262.54 387.72 3.94x

Table 1: The overall execution time (s) of GCN and CPU-PCGCN, denoted as CPU-
partitions, for 100 training epochs.

The performance of CPU-PCGCN compared to the baseline PyGCN model implemented
in PyTorch demonstrates significant speed enhancements. On average, CPU-PCGCN achieves
a speedup of 2.11, peaking at 3.94. Comparisons are made between the base PyGCN imple-
mentation using either sparse (S) or dense (D) computation (without partitioning the graph)
and CPU-PCGCN with a specific number of partitions, denoted as CPU-partitions. In all
cases, CPU-PCGCN shows improvement in computational time. Furthermore, for denser
graphs (only for PaRMAT-1), the benefit of partitioning into 4 subgraphs is apparent. How-
ever, increasing the partition count to 16 does not improve computation time or cache local-
ity (as seen in PaRMAT-1, where higher partition count leads to higher subgraph density).
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