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INTRODUCTION

e GPUs are the fundamental compute platform in data
centers (HPC, DL, Big-Data, etc.). El Capitan #1 Top500
(June 2025) °

e More and more specialized hardware units (TC, RT, AMP,
TMA, ...)

e Difficult to harness their full potential, specially in kernels
that are highly sensible to memory latency.

e The trend is to give programmers more tools to overlap
memory operations.

43,808 AMD MI300A GPUs
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INTRODUCTION

e Techniques like Warp Specialization.
e One warp is doing do a very specific job (divergency in gpu
is bad!)
e Usually a consumer-producer scheme
e Synchronization is very difficult (fine-grained).
e Usually implemented as busy-loop waiting = consumes
GPU resources and further degrades the performance
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INTRODUCTION

o New NVIDIA accelerator, Tensor Memory Accelerator
(TMA), can transfer large blocks of data asynchronously.

e TMA Descriptor a new data structure located in the SMEM
to store different parameters: memory addresses, data
length, offsets...
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MOTIVATION

e New problem arises, the TMA is very complex to use.

e Queue mechanisms (OperandQueues in CUDA or Pipes in
OpenCL), as a way to reduce complexity.

e Helps the programmer, but still, there are so many details
left out (number of queues, SMEM addresses, managment
of the queues).

e Cell BE processor was a failure due to the complexity of
the DMA engine.
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MOTIVATION

e Our goal: use the TMA with the lowest complexity and
highest performance.
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MOTIVATION
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MOTIVATION
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MOTIVATION
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ACTA

e Queue Configuration is highly kernel dependent and
architecture dependent.

e Novel software library to infer optimal tile sizes and queue
slots configurations for the TMA based on the kernel and
gpu’s architecture.

e Our new hardware unit, the GPU Specification Table
(GST).
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ACTA

e ACTA extends the GPU SDK by providing an API for
dynamically configuring kernel queues.

driver.MemCopyH2D (b.device_A, b.MatrixA)
driver.MemCopyH2D(b.device_B, b.MatrixB)
driver.CreateCommandQueue ()

// Init ACTA for configuring the Queues
driver.InitACTA(MEDIUM, 8, 64)

// Register the Queues
driver.RegisterQueue(K, 4, TYPE_STREAMING)
driver.RegisterQueue(K, 4, TYPE_STATIONARY)

// Obtain the Queues sized in FIFO order
a_queue = driver.SizeQueue ()
b_queue = driver.SizeQueue ()

// Load kernel arguments using the QuCo
kernArg := KernelArgs{
b.device_A, b.device_B, b.device_Z, M, K, N,
Ko, a_queue.TileSize, b_queue.TileSize, K2, Mo, M1,
M2,
a_queue.QueueTiles, b_queue.QueueTiles, ConsumerWfs

}

driver.EnqueueLaunchKernel (binary, kernArg)
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ACTA

e Optimal Tile Size Calculation

e Using the arithmetic intensity, number of consumer
wavefronts, GST, and a tile size range (i.e. 64 to 2048).

e Merit factor to balance processing time and memory time
for each tile.

e For the given range, we calculate the most suitable tile
based on the merit factor.

o Further adjustments based on a scaling factor and the
number of CUs.

e Optimal Number of Tiles Calculation

o Differentiate streaming vs stationary to assign more or less
SMEM space.

o Little’s Law fundamental relation in queuing systems, linking
the average number of items in a system, their arrival rate
(memory time), and their residence time (processing time).

e Based on the arithmetic intensity, higher arithmetic
intensity, more slots, lower arithmetic intensity, less slots.
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EVALUATION METHODOLOGY

e Implemented on MGPUSIim, a microarchitectural
cycle-level simulator that accurately models the AMD R9
Nano GPU, a solid baseline.

o We extended the simulator with a TMA model inspired by
the functionality of the NVIDIA Hopper's TMA, we refer to
ours as TMA-Like.

e Linear algebra kernels implemented (elementwiseK,
elementwise, dot-product, sumvectors, matrix-vector and
matrix-matrix).

e Using ACTA for matrix-matrix operations reduces the total
iterations required for complete design space exploration
from 2.6 x 10" to just 1.
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RESULTS
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CONCLUSIONS

e Release the programmer from the low-level details of the
TMA.

e Achieve near-optimal performance (within 2.78%

compared to exhaustive tuning), with one single execution.

e Suitable across multiple GPU architectures.
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OPTIMAL TILE S1ZE CALCULATION

Algorithm 1: Optimal Tile Size Calculation

Input: Range of tile sizes: [min, max], Math Wavefronts, Ar.I, GST
Output: Optimal tile size
Function optimal_tile_size()
for tile € [min, max] do
meritFactor « evaluate (processing vs memory efficiency for
tile);
costFunction < estimate(memory usage for tile);
weightedMerit «— combine(meritFactor, costFunction to compute
final score);
if tile is better than the best then
| update best;
end
end
best « adjust(based on scaling factor and arithmetic intensity);

end
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MERIT FACTOR

Algorithm 2: Function for calculating the Merit Factor
Input: Tile Size, GST
Output: Merit Factor
Function evaluate()
// Step 1: Compute the best-case scheduling time for
processing the tile
bestScheduling «—

TileSize
SIMDMulsPerCyclexmin (ConsumerWfs,4)
// Step 2: Calculate processing time, including scheduling
roundtrip overhead
procTime « bestScheduling + (bestScheduling — 1) x
min (ConsumerWfs — 1, WfPools)
// Step 3: Compute memory transfer latency and times
latencyTotal « TMACycles + DRAMLatency + L2Latency
memTransferTime « TiSizexElementSize
cacheTransferTime « 2 X Tiﬂegfce}zﬂi':&’;sm
// Step 4: Aggregate memory transfer time
memTime «—
latencyTotal + memTransferTime + cacheTransferTime
// Step 5: Return the merit factor as the ratio of
processing time to memory time
procTime
memTime

return

end
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OPTIMAL NUM TILES CALCULATION

Algorithm 3: Optimal Number of Slots Calculation

Input: Streaming and stationary queues, Ar.I,, Compute Units
Output: Optimal number of slots for each Queue
Function optimal_num_slots()
count streaming and stationary queues;
if there are streaming queues then
numSlots < useLittlesLaw();
numSlots < roundToPowerOfTwo(numSlots);
numSlots < roundBasedOnCUs(numSlots);
if sufficient space in Shared Memory then

| allocateSpace(streaming queues);
end
else

numSlots < useArithmeticIntensity();
reduce numSlots if necessary to fit the data;
allocateSpace (streaming queues);
end
end
if there are stationary queues then
calculate available space for each stationary queue;
determine how many slots can fit into the remaining space;
numSlots < roundToPowerOfTwo(numSlots);
numSlots < roundBasedOnCUs(numSlots);
reduce numSlots if necessary to fit the data;
allocateSpace(stationary queues);

end

end
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